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Critical behavior of the contact process in a multiscale network
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Inspired by dengue and yellow fever epidemics, we investigated the contact process (CP) in a multiscale
network constituted by one-dimensional chains connected through a Barabasi-Albert scale-free network. In
addition to the CP dynamics inside the chains, the exchange of individuals between connected chains (travels)
occurs at a constant rate. A finite epidemic threshold and an epidemic mean lifetime diverging exponentially in
the subcritical phase, concomitantly with a power law divergence of the outbreak’s duration, were found. A
generalized scaling function involving both regular and SF components was proposed for the quasistationary
analysis and the associated critical exponents determined, demonstrating that the CP on this hybrid network
and nonvanishing travel rates establishes a new universality class.
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I. INTRODUCTION

Complex networks are involved in a wide range of bio-
logical, social, and technological systems [1,2] such as, for
instance, the Internet [1,3], the network of human sexual
contacts [4,5], and the transportation infrastructure [6,7].
These nets exhibit “scale-free” (SF) degree distributions,
characterized by a probability P(k)~k~” that an element in
the network is connected to k other elements. Usually, the
degree exponent assumes a value in the range 2 <y<3 [1].
In special, since many infectious diseases exploit the social
contact network in order to spread among human hosts [8]
and computer viruses inflict significant damages throughout
the Internet [9], epidemic spreading through a variety of net-
works, including random graphs (RG), small worlds (SW)
and SF networks, have been extensively studied [9-15].

Pastor-Satorras and co-workers [9,11-13] investigated the
epidemic spreading on complex networks using the
susceptible-infected-susceptible (SIS) model. For all net-
works considered (RG, SW, and SF), excellent agreements
between mean-field and numerical results were obtained at
the transition to the absorbing state [11]. However, Castell-
ano and Pastor-Satorras [ 14] observed a non-mean-field criti-
cal behavior dependent on 7 for the classical Harris contact
process (CP) [16] on SF networks. So, these models, sharing
the directed percolation (DP) universality class on regular
lattices [16,17], exhibit distinct critical behaviors on SF net-
works.

The deep impact of complex networks on epidemiology,
radically altering traditional control and vaccination strate-
gies, brings to the focus some epidemic processes associated
to tropical diseases that cannot be properly described by ei-
ther a purely regular, SW or SF networks. Indeed, the spread-
ing of dengue and yellow fever, the main re-emergent dis-
eases [18] in the world, are determined by the population
dynamics of mosquitoes with a limited flight range (~200 m
for Aedes aegypti), domestic habits and local dispersion in-
dependent on the human contact network. Furthermore, in
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their epidemiological chains, a relevant factor for viral circu-
lation is the travels of symptomless infected people. Such
travels occur on regional and national interurban commuting
traffic networks which behave as SF weighted nets with
modularity [7]. Hence, the spreading of dengue and yellow
fever combines a local contact process among mosquitoes
and individuals around their houses with long-range dis-
persal through symptomless infected people traveling be-
tween cities. Aiming to include this two-component spread-
ing process, Silva et al. studied the SIS model in SF
networks of square lattices [19]. Although they focused on
dynamics instead of the transition to the absorbing state, a
nonzero epidemic threshold characterized by a singular ap-
proach to the epidemic-free state was found.

In this paper, we report on numerical simulations of the
CP model in a SF network in which the nodes are linear
chains. The transition to the absorbing state is focused. The
model and its computer implementation are presented in Sec.
II. Simulations are reported and discussed in Sec. III. Finally,
some conclusions are drawn in Sec. IV.

II. MODEL

In the model, individuals lie on N linear chains of size L
with periodic boundary conditions (the cities), in which
empty and occupied sites represent healthy and infected in-
dividuals, respectively. The cities are connected according to
the Barabasi-Albert (BA) model [1], i.e., in a SF network
with a degree distribution given by P(k) ~k~* (Fig. 1). The
model dynamics incorporates a local spreading in which
healthy sites with n occupied nearest neighbors (NNs) are

FIG. 1. Schematic representation of the network. The connec-
tions between chains (the cities) are represented by lines. Black and
white squares correspond to occupied and empty sites, respectively.
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infected at a rate n\/2 while any infected site is spontane-
ously cured at rate 1. Additionally, two sites in distinct con-
nected nodes are interchanged at a rate a representing a
travel. These travels occur preferentially to nodes with larger
connectivity. The simulations were implemented as follows.
At each time step, an infected site is selected at random and
the time incremented by Ar=1/N,,., where N, is the total
number of infected sites in all nodes. The selected site will
perform one of three actions: (i) become healthy with prob-
ability p=1/(1+\+a); (ii) randomly select and infect one of
its healthy NNs with probability g=\/(1+\+a); (iii) travel
with probability r=1-p—g¢g. In a travel, the target node j,
with degree k;, is chosen among all those connected to the
departure node i with probability II;_,;=k;/X k;. Notice that,
differently from the Castellano and Pastor-Satorras model
[14], the infection spreading occurs among individuals with
the same number of connections (the regular lattice coordi-
nation) as in the original CP [16], while in Ref. [14] the
number of connections varies from one individual to the
other following a power law distribution. Also, the original
CP is obtained when a=0 (no travels), but no limit corre-
sponds to the CP on scale-free networks.

Computer simulations were done for chains of sizes vary-
ing from L=107 to 12 800 and the number of nodes ranging
from N=400-12 800. For each group of ten samples, a SF
network was generated from Ny=10 fully interconnected
nodes according to the BA preferential attachment algorithm
[1]. New nodes were sequentially added to the growing net-
work through m=4 links, the minimum degree value. In or-
der to determine the criticality at the transition to the absorb-
ing state, the overall density p of infected sites through all
nodes, the local density { restricted to those nodes with at
least one infected site, the fraction of colonized nodes ()
(those with infected sites), and the survival probability P,
were evaluated.

III. RESULTS

As observed for the CP in SF networks [14], the simula-
tions in Fig. 2 revealed a non null epidemic threshold. The
upper inset shows the corresponding survival probabilities,
exhibiting the same behavior. The initial condition was a
single infected site at the center of a randomly chosen node.
In the upper-critical regime, both quantities reach constant
asymptotic values, contrasting with the increasing as n~
of the mean number of infected sites for the CP on regular
lattices [16]. The heterogeneous distributions of infected
sites in the nodes, with only few of them highly infected,
produce the plateaus observed at relatively short times (~ 10°
for chains with L=6000 sites). In general, models with ab-
sorbing configurations exhibit power law time dependencies
P,~1t° n~1t7, and R*>~f at the critical point for the sur-
vival probability, the mean number of infected sites, and the
spreading of epidemics, respectively [16,20,21]. Accord-
ingly, Fig. 2 provides spreading exponents close to zero for
the CP model on the present hybrid network.

The mean lifetime divergence when A — A can be used
to estimate the critical point. The exponential decay
p~exp(~t/7,) [lower inset of Fig. 2] determines the decay
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FIG. 2. Evolution in time of the density of infected sites for L
=10% N=1600, @=0.5, and epidemic rates varying from A=1.549
to 1.558 in intervals AN=10"3 from the bottom to the top. Upper
inset: survival probabilities as functions of time for epidemic rates
shown in the main figure. Lower inset: semilogarithmic plots for
A=1.549-1.551 in intervals AN=1073. The averages were done
over N,=10* to 5 X 10° independent samples (the lower X the larger
Ny).

time as a function of N. As shown in Fig. 3, an exponential
divergence given by 7,(\,L)~exp(const./A) was found.
Here, A=|\,—\|. This behavior differs from the power law
7~ |A[7"I usually observed in transitions to absorbing states
in regular lattices [ 16]. Indeed, a power law also fits the data,
but very large exponent values (v=6-8) were obtained,
supporting further the hypothesis of exponential divergence.
The exponents y=o and 6=7=z=0 are consistent with the
well known scaling relations 6=8/v|, z=2v /v, and 45
+27n=dz [16]. Despite very strong finite size effects, a char-
acteristic feature of epidemics on SF networks [9,11,14], the
critical rate can be determined by exponential nonlinear fit-
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FIG. 3. Characteristic infection lifetimes in the subcritical re-
gime against the infection rates for several node sizes. N=1600 and
a=0.5 are fixed. Inset: FSS analysis to extrapolate the critical rate.
Sampling as in Fig. 2.
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tings. In the inset of Fig. 3, the critical rate is shown as a
function of L4 [22] and its extrapolation to an infinite size
provides a critical rate A,=1.5432(5), in which the error is in
parentheses. This value agrees with estimates from quasista-
tionary simulations described in the next paragraphs. The
critical rate and exponential divergence of 7, does not de-
pend on network size N for the studied range. The same
analysis was done for { and P, providing the same critical
rate and exponential divergence for the mean lifetime esti-
mated through the analysis of p.

In order to perform a finite size scaling (FSS) analysis
near the criticality, we used quasistationary (QS) simulations
in which only the survival trials are considered in the aver-
ages [14,16]. Moreover, a generalized scaling hypothesis that
explicitly considers the validity of the usual FSS [14,16] for
fixed N or fixed L was assumed

p(A,L,N) =L—,B/VLN—,B,/VLf[ALl/VLNl/Vl]' (1)

Similar relations can be proposed for the other quantities.
Thus, the thermodynamic limit can be estimated through
three distinct ways. The first one, in which the size L grows
faster than the number of nodes N, implying N/L— 0, seems
to be more adequate to describe epidemic spreading in the
real world. Alternatively, the FSS analysis can be performed
with N growing faster than L, leading to N/L— o0, or main-
taining a constant ratio N/L.

For a large but fixed N, Eq. (1) becomes py(A,L)
=L P".G(ALY"1), in which G(x)~x# for x>1 and G(x)
~x7"1*B for x<1 is the scaling function [16]. So, at the
critical point (A=0), the density scales as p,~ L™#"*. Simi-
larly, power laws can be associated to the other quantities at
the criticality, namely, {,~L™""L, 7~L""2 and Q,~L""x,
as shown in Fig. 4. Notice that the density of infected nodes
Q, grows with the node size. The exponents and the critical
rates, determined through the null curvature criterion [23],
are listed in Table I. These values are, within the margins of
error, independent on the number of nodes for N=3200,
6400, and 12 800, or travel rates on the studied interval. In
turn, the critical infection rate decreases continuously from
N\.=3.2928 (the CP critical rate) for a=0 to A\,=1 for «
— 00,

Analogously, for fixed L, Eq. (1) leads to similar power
laws at the criticality associated to another scaling function

H(x), except for ), that now decays as N7/ "\ since v' <0.

In Table II, the critical exponents obtained through distinct
approaches to the thermodynamic limit are compared. These
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FIG. 4. QS densities p, (squares), Z, (circles) and Q, (dia-
monds), for fixed N=1600 and a=0.1 at the critical rate \.
=2.118. Upper-critical and a subcritical data for p are shown.
Straight lines are power law fits. Lower inset: QS local densities as
functions of time for system sizes L=100, 200, 400, 800, 1600,
3200, 6400, and 12 800 from the top to the bottom as used in the
main figure. Upper inset: Critical QS relaxation time determined
using the density ;. The number of samples varies from N,=2
X 103-10° (the larger L the lower N,).

values confirm the critical behavior foreseen by Eq. (1) since
the sum of the exponents obtained for L and for N fixed
equals, within the margins of error, those with a fixed ratio
N/L. Indeed, B'=v' B+v, B, V| =v, v/, and so forth for
N/L fixed. Also, whatever the approach, the relation 9=p
+ vy is valid, reflecting the independence between densities of
infected individuals inside the nodes and the fraction of cities
in which the epidemics persists at criticality. Indeed, as a
result, Z,~ p,/ Q~ L~ B+ N-(B+y)0vy

Finally, according to the scaling hypothesis (1), plots of
LPip(A,L)X ALY"1, for fixed N, and Nﬁ’/"lﬁs(A,N)
X ANV "’i, for fixed L, using the correct exponents v, or Vl
should collapse the data onto universal curves. In Fig. 5 (up-
per) are shown the collapses of p obtained onto G(x) (fixed
N) for 1/v,=0.423(4) and onto H(x) (fixed L) for 1/v
=0.125(5). Thus, using the exponents from Table II, we
found B=1.23(3), y=0.86(3), and »=1.14(3) for fixed N,
and B'=7.3(3), ¥'=0.6(3), and v/ =0.6(3) for fixed L. The
large value found for B’, representing a rapid vanishing of p
at A, is consistent with the exponential approach obtained

TABLE 1. Critical rates and exponents for the CP on hybrid networks with N=1600 nodes. The uncer-

tainties in the last digits are indicated in parentheses.

a e Blv, Gy, ylv, ylv,
0.1 2.1179(5) 0.526 0913 0.366 0.486
0.5 1.5435(5) 0.523 0.905 0.365 0.482
1.0 1.3451(4) 0.523 0.901 0.367 0.488
Mean value 0.524(3) 0.906(6) 0.366(3) 0.485(3)
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TABLE 1I. Critical exponents for the densities of the CP on
hybrid networks for @=0.5 and \.=1.543. Fixed L FSS analysis
were done for L=1600 and 3200 and N=800. The ratios k=0.5, 1,
and 2 were used in the N/L=k approach.

Exponents at A=0"

Approach Blv, 9w, vlv, ylv,

Fixed N 0.526(3)  0.911(6) 0.367(3)  0.484(3)
Fixed L 0.912(9)  0.073(8)  —0.82(1) 0.080(7)
Fixed N/L 1.428(6)  0.97(1) -0.458(8)  0.557(6)

Primes were omitted for the sake of brevity.

for the SIS model in BA networks [9,11]. Also, the finite
value obtained for v in the QS analysis for fixed N deserves
a comment. It contrasts with the exponential divergence of
the characteristic epidemic mean lifetime (Fig. 3). This para-
doxical result could be interpreted in terms of two time
scales for the infection dynamics. The first one refers to an
exponentially long persistence time of the epidemics spread-
ing from a spatially concentrated focus in the subcritical
phase. We conjecture that the heterogeneity of the connection
among cities, thereby of travels, promotes this long persis-
tence, in contrast to the CP with sources [16] if the SF net-
work is replaced by a regular one. The second time scale is
associated to the outbreaks, which diverges algebraically at
the critical point as in local epidemics. The exponents listed
in Tables I and II are quite distinct from those related to DP
universality class [16] (fixed N) and, also, do not agree with
numerical estimates for CP on SF networks [14] (fixed L),
establishing a new universality class.

IV. SUMMARY

We presented numerical simulations of the CP on hybrid
networks in which the nodes are themselves regular lattices
and individuals travel between nodes. The main results are a
finite epidemic threshold and an exponentially long persis-
tence of the epidemics below the critical rate, concomitantly
with a power law divergence of the outbreak’s duration. Gen-
eralized scaling functions involving both regular and SF
components were proposed and the associated critical expo-
nents determined, demonstrating that the CP on this hybrid
network and nonvanishing travel rates establishes a new uni-
versality class. Also, at criticality, the densities of infected
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FIG. 5. Upper: collapses of p for either N=1600 or L=800
fixed. For fixed N, 1/v,; =0.423 and B/v, taken from Table II were
used. For L fixed, 1/ =0.125 was used. Bottom: collapses for
both L and N varying. a=0.1 in this Fig. Here, p“=p,LP"L or
pNBPL and A*=ALY": or ANYY\. In turn, p™*=p,LF" NF'"\ and
A ALV NI,

individuals inside the nodes and the fraction of cities in
which the epidemics persist are independent.
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